BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 50 (7), 1891—1892 (1977)

Preparation and Resolution of (4-Aminobutanoic acidato)bis-(ethylenediamine)cobalt(III) Ion

Masaaki Kojima, Hiromichi Takayanagi, and Junnosuke Fujita Department of Chemistry, Faculty of Science, Nagoya University, Chikusa, Nagoya 464 (Received January 31, 1977)

Synopsis. A new complex containing a seven-membered chelate ring, $[Co(amb)(en)_2]^{2+}$ (amb=4-aminobutanoato ion) was prepared and resolved. The complex is decomposed in 1.0 M $HClO_4$ at room temperature to give $[Co(H_2O)(Hamb)(en)_2]^{3+}$ in which the Hamb acts as a unidentate ligand with a free carboxyl group.

Although complexes of the type, $[\text{Co(am)(en)}_2]^{2+}$ (am=amino acidate ion) have been prepared and resolved for a variety of amino acids, no complex has been reported for 4-aminobutanoato ion (amb) which forms a seven-membered chelate ring. This Note will describe the preparation and resolution of $[\text{Co(amb)(en)}_2]^{2+}$ and compare the absorption and circular dichoism(CD) spectra with those of the corresponding glycinato and β -alaninato complexes. Koine et al.¹⁾ prepared a complex containing amb, trans(N)-K[Co(nta)(amb)]·3H₂O(nta=nitrilotriacetate ion). However, no evidence was given for the formation of a seven-membered chelate ring. Such large chelate ligands as amb tend to coordinate to a metal ion as a unidentate ligand or to two metal ions as a bridging ligand.^{2,3)}

Experimental

Ligands. Guaranteed reagent grade 4-aminobutanoic acid, β -alanine, and glycine were obtained from Wako Pure Chemical Industries Co. and used without further purification.

 $[Co(amb)(en)_2]Cl_2 \cdot 2.5H_2O$. A solution of sodium methoxide (0.16 g, 3.0 mmol) and 4-aminobutanoic acid (0.31 g, 3.0 mmol) in methanol (7 cm³) was added to a solution of trans-[CoCl₂(en)₂]ClO₄ (0.9 g, 3.0 mmol) in DMSO(250 cm³). The solution was stirred for 20 h at 40 °C, and then diluted with 3 dm3 of water. This was passed through an SP-Sephadex column ($\phi 4.5 \times 30$ cm), and the adsorbed complexes were chromatographed with a 0.2 M Na₂SO₄ solution. The column showed seven separate bands. The effluent of the first red band was diluted with 3 dm³ of water and poured again on an SP-Sephadex column ($\phi 2.7 \times 3$ cm). The adsorbed complex was eluted with a 1.0 M CaCl₂ solution, and the effluent was concentrated to a syrup in a vacuum desiccator over P2O5. The excess CaCl2 was extracted repeatedly with a small amount of isopropyl alcohol until the complex began to crystallize. The complex was dissolved in a small amount of water, and isopropyl alcohol was added to the solution. Purplish red crystals which formed on cooling the mixing solution in a refrigerator were filtered off and washed with isopropyl alcohol. The complex was recrystallized from water by the addition of isopropyl alcohol. Found: C, 24.24; H, 7.38; N, 18.10%. Calcd for $CoC_8H_{29}N_5O_{4.5}Cl_2=$ [Co- $(amb)(en)_2$ Cl₂·2.5H₂O: C, 24.19; H, 7.36; N, 17.63%.

 $[Co(gly)(en)_2](ClO_4)_2$ and $[Co(\beta-ala)(en)_2](ClO_4)_2 \cdot H_2O$. $[Co(gly)(en)_2](ClO_4)_2$ was prepared by the method of Shimura and Tsuchida.⁴⁾ $[Co(\beta-ala)(en)_2](ClO_4)_2 \cdot H_2O$ was obtained from the corresponding chloride.⁵⁾ The complex chloride

adsorbed on SP-Sephadex was eluted with a 1.0 M NaClO₄ solution, and the effluent was concentrated to a small volume in a vacuum desiccator over P_2O_5 . The concentrate was mixed with ethanol, and cooled. Red crystals were filtered off, washed with ethanol, and recrystallized from water by the addition of ethanol. Found: C, 17.40; H, 4.99; N, 14.46%. Calcd for $CoC_7N_5H_{24}O_{11}Cl_2=[Co(\beta-ala)(en)_2]-(ClO_4)_2\cdot H_2O$: C, 17.36; H, 5.00; N, 14.46%.

Chromatographic Resolution of the Complexes. A solution containing about 0.1 mmol of the amb complex (or the β -ala or the gly complex) was poured on an SP-Sephadex column (ϕ 2.7×120 cm) and the adsorbed band was eluted with a 0.1 M sodium (+)₅₈₉-tartrate or a 0.08 M sodium (+)₅₈₉-tartratoantimonate(III) solution. Two bands, the (+)₅₈₉-and (-)₅₈₉-isomers, were eluted in this order. Each eluate was passed through an SP-Sephadex column (ϕ 1.5×3 cm) after dilution with water and the adsorbed complex was eluted with a 1.5 M NaClO₄ solution.

Measurements. Absorption and CD spectra were obtained on a Hitachi 323 spectrophotometer and a JASCO J-20 spectropolarimeter, respectively.

Results and Discussion

[Co(gly)(en)₂]²⁺ and [Co(β -ala)(en)₂]²⁺ can easily be prepared by the reactions of trans-[CoCl₂(en)₂]⁺ with gly or β -ala, respectively in water at fairly high concentration of the reactants. A reaction with amb under a similar condition is not expected to give the desired complex, since such large chelate ligands as amb or tmd(tetramethylenediamine) tend to act as a bridging

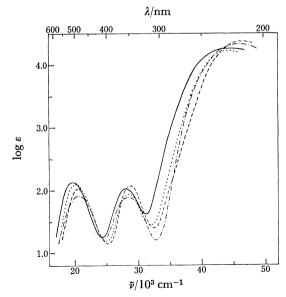


Fig. 1. Absorption spectra of $[Co(gly)(en)_2]^{2+}(----)$, $[Co(\beta-ala)(en)_2]^{2+}(----)$, and $[Co(amb)(en)_2]^{2+}(----)$ in water, and $[Co(H_2O)(Hamb)(en)_2]^{3+}(-----)$ in 1.0 M HClO₄.

TABLE 1. ABSORPTION AND CD SPECTRAL DATA

Complex	Absorption ^{a)}		$CD^{b)}$	
	$\widetilde{v}/\mathrm{cm}^{-1}$	$\log arepsilon$	$\widetilde{\mathfrak{v}}/\mathrm{cm}^{-1}$	$\Delta arepsilon$
$(+)_{589} [\mathrm{Co}(\mathrm{gly})(\mathrm{en})_2]^{2+}$	20450	2.00	19690	+2.26
	28800	2.03	27000	+0.09
			30300	+0.15
	45900	4.15	46700	27
$(+)_{589} [{ m Co}(eta ext{-ala}) ({ m en})_2]^{2+}$	20160	2.09	19270	+1.28
			21800	-0.52
	28400	1.93	27300	+0.21
	44100	4.22	44100	-12
$(+)_{589}[\mathrm{Co(amb)(en)_2}]^{2+}$	19800	2.11	18690	+1.27
			21470	-0.71
	27900	2.03	27400	+0.20
	44100	4.27	47200	-17
$(+)_{589}[Co(H_2O)(Hamb)-$	20530	1.90	20620	+0.31
$(en)_2]^{3+}$	28500	1.89	26400	+0.10
			30300	+0.03
	45500	4.32	45700	-8.5

a) In water except for $(+)_{589}[\text{Co}(\text{H}_2\text{O})(\text{Hamb})(\text{en})_2]^{3+}$ which was measured in 1.0 M HClO₄. b) In 1.5 M NaClO₄ except for $(+)_{589}[\text{Co}(\text{H}_2\text{O})(\text{Hamb})(\text{en})_2]^{3+}$ which was measured in 1.0 M HClO₄.

ligand to yield polymeric complexes.³⁾ Thus, we have carried out the reaction in a highly dilute solution as described in the Experimental part. The use of organic solvent, DMSO is known to be useful for preparing complexes containing large chelate rings.⁶⁾

The formation of the amb chelate ring is evidenced by the following observations. The absorption spectrum of the amb complex in a 1.0 M HClO₄ solution changes with isosbestic points(416, 458 nm), the change at room temperature(25 °C) being completed in a day. Since the first absorption band (487 nm) of the final spectrum is nearly the same as that (485 nm) of cis-[Co(H₂O)(NH₃)(en)₂]³⁺,⁷⁾ the spectral change may correspond to a ring-opening reaction of the amb chelate to give cis-[Co(H₂O)(Hamb)(en)₂]³⁺ (Fig. 1). The absorption spectra of the gly and β -ala complexes in 1.0 M HClO₄ remained unchanged over a prolonged heating. Further, the amb complex adsorpbed on SP-Sephadex is eluted with a 0.2 M Na₂SO₄ solution with a similar $R_{\rm f}$ value to those of the gly and β -ala complexes.

As Fig. 1 and Table 1 show, the d-d absorption bands of the present series of complexes, $[\text{Co(am)(en)}_2]^{2+}$ shift to longer wavelengths as the number of ring members of the amino acidate ligands increases. A similar shift was observed for complexes of the type, $[\text{Co(en)}_2(\text{diamine})]^{3+}$; the first absorption bands of $[\text{Co(en)}_3]^{3+}$, $[\text{Co(en)}_2(\text{tn})]^{3+}(\text{tn=trimethylenediamine})$, and $[\text{Co-(en)}_2(\text{tmd})]^{3+}$ are at 21.3, 21.0, and $20.9 \times 10^3 \, \text{cm}^{-1}$, respectively.³⁾

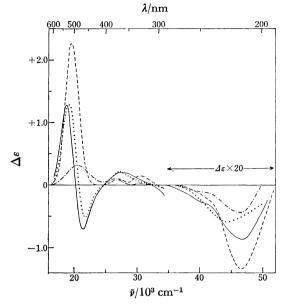


Fig. 2. CD spectra of $(+)_{589}[\text{Co(gly)(en})_2]^{2+}(----)$, $(+)_{589}[\text{Co}(\beta\text{-ala})(\text{en})_2]^{2+}(----)$, and $(+)_{589}[\text{Co(amb)-(en)}_2]^{2+}(----)$ in 1.5 M NaClO₄, and $(+)_{589}[\text{Co(H}_2\text{O})-(\text{Hamb})(\text{en})_2]^{3+}(----)$ in 1.0 M HClO₄.

All the complexes have been completely resolved by SP-Sephadex column chromatography. Figure 2 shows the CD spectra of the $(+)_{589}$ -isomers. The CD spectrum of the gly complex agrees well with that reported previously.⁸⁾ All the $(+)_{589}$ -isomers give a main positive and a strong negative CD band in the first absorption and the charge transfer region, respectively. Therefore, it can be concluded that these isomers have the same absolute configuration, Λ . The β -ala and the amb complexes exhibit negative CD components at a shorter wavelength side of the first absorption band. Although no such a component is observed for the gly complex, these negative components seem to increase the strength as the number of ring member of the amino acidate ligand increases.

References

- 1) N. Koine, N. Sakota, J. Hidaka, and Y. Shimura, Bull. Chem. Soc. Jpn., 42, 1583 (1969).
- 2) A. Takenaka, E. Oshima, S. Yamada, and T. Watanabe, Acta Crystallogr., Sect. B, 29, 503 (1973).
- 3) H. Ogino and J. Fujita, Bull. Chem. Soc. Jpn. 48, 1836 (1975).
- 4) Y. Shimura and R. Tsuchida, Bull. Chem. Soc. Jpn., 29, 311 (1956).
- 5) M. Ogawa, Y. Shimura, and R. Tsuchida, Nippon Kagaku Zasshi, 81, 72 (1959).
 - 6) H. Ogino and J. Fujita, Chem. Lett., 1973, 517.
 - 7) F. Basolo, J. Am. Chem. Soc., 72, 4393 (1950).
- 8) C. T. Liu and B. E. Douglas, *Inorg. Chem.*, 3, 1356 (1964).